Towards a Universal Speech Model

Prompting Speech Language Models for Diverse Speech Processing Tasks

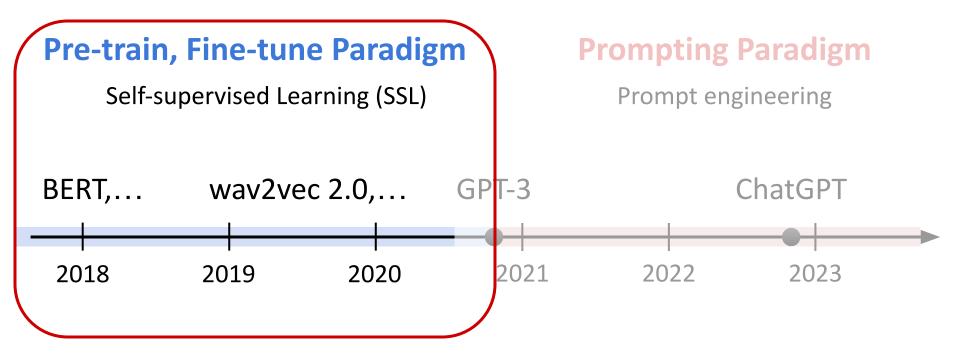
Advisor: Dr. Hung-yi Lee

Date: 2025/01/06

Outline

- Background
 - Pre-train, fine-tune paradigm vs.Prompting paradigm
 - Textless Speech Language Models
- SpeechPrompt: Prompting Speech LM for diverse tasks
- Exploring In-context Learning for Speech Language Model
- Conclusion
- Future Works

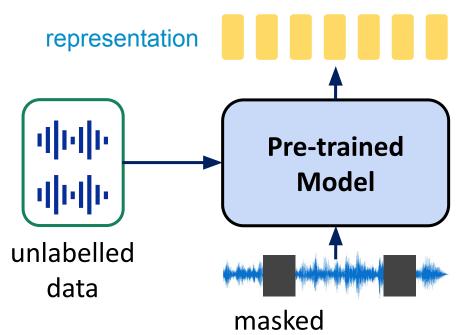
Background

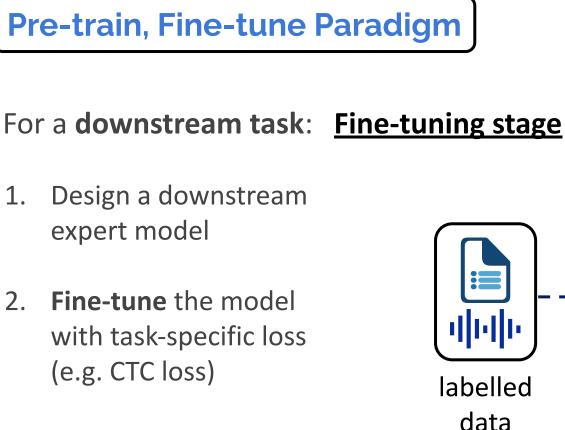


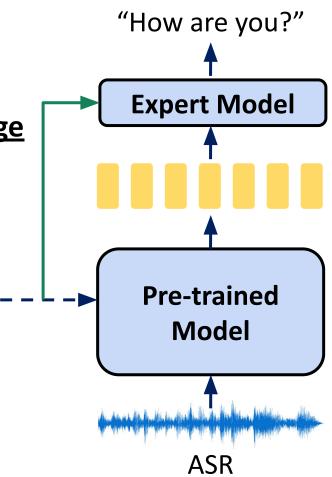
Representation Models

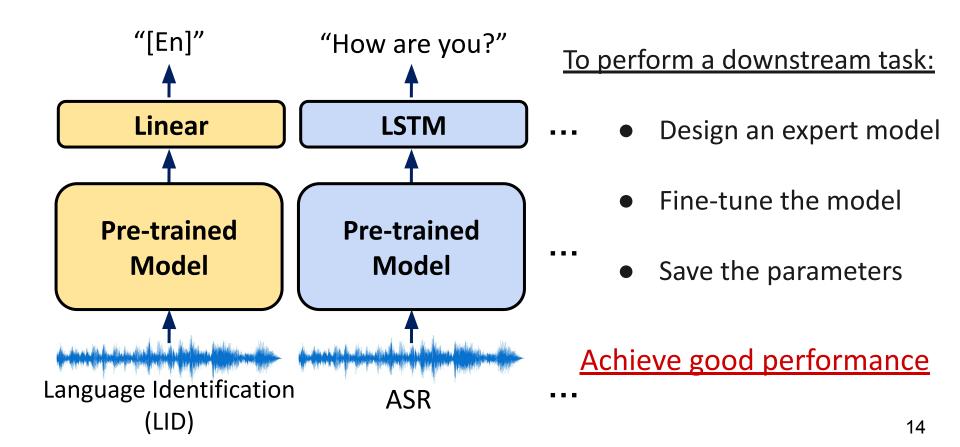
SSL objective e.g. masked prediction

Pre-training stage

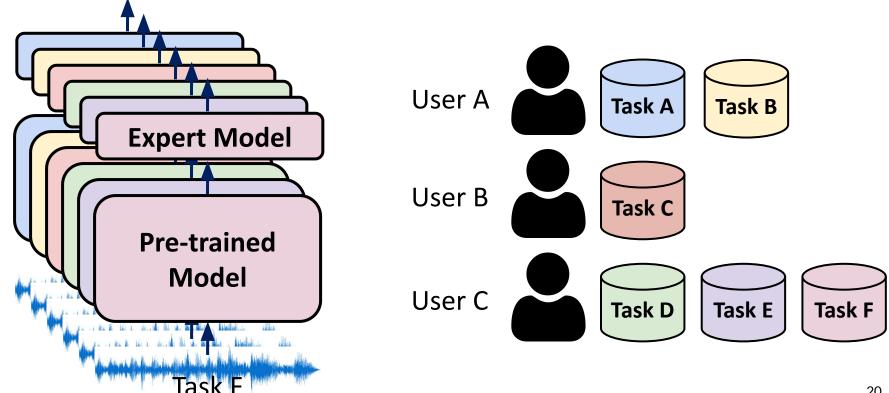


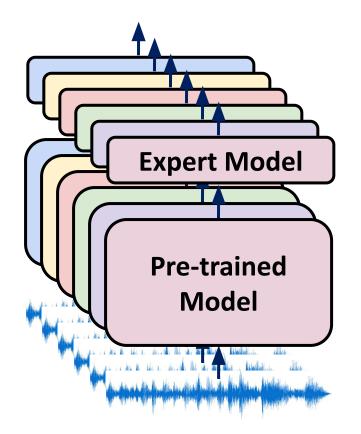






If you want to serve lots of users...





If there are lots of tasks to serve...

- Design an expert model human labor
- Fine-tune the model computational cost
- Save the parameters storage cost

Is it possible to build a universal and efficient speech processing system?

Is it possible to build a universal and efficient speech processing system?

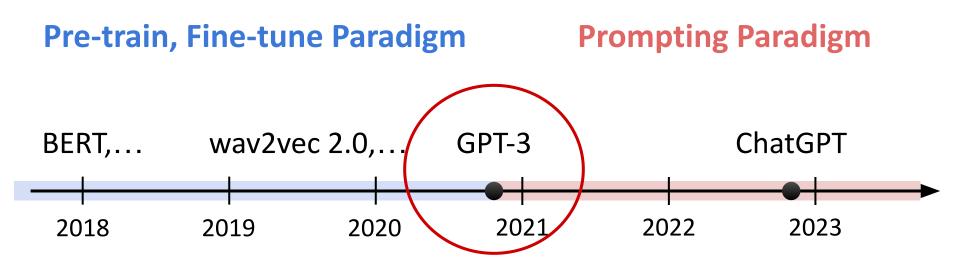
Solve diverse speech processing tasks in a unified manner *No need to design expert models*

Is it possible to build a universal and efficient speech processing system?

Trainable parameter efficiency Computation and storage efficiency

Is it possible to build a universal and efficient speech processing system?

Inspiration: Prompting paradigm in NLP

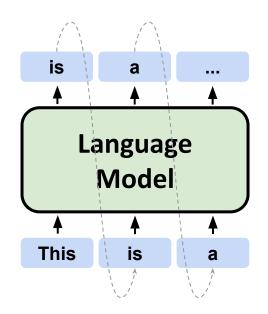


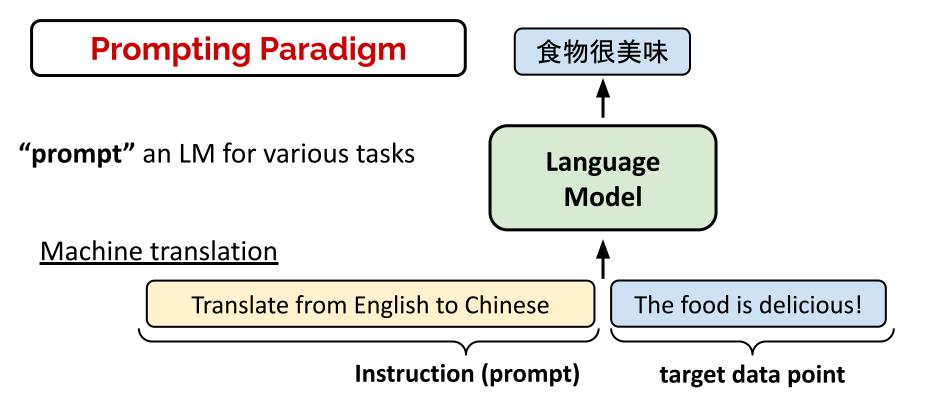
Prompting gained more and more attention

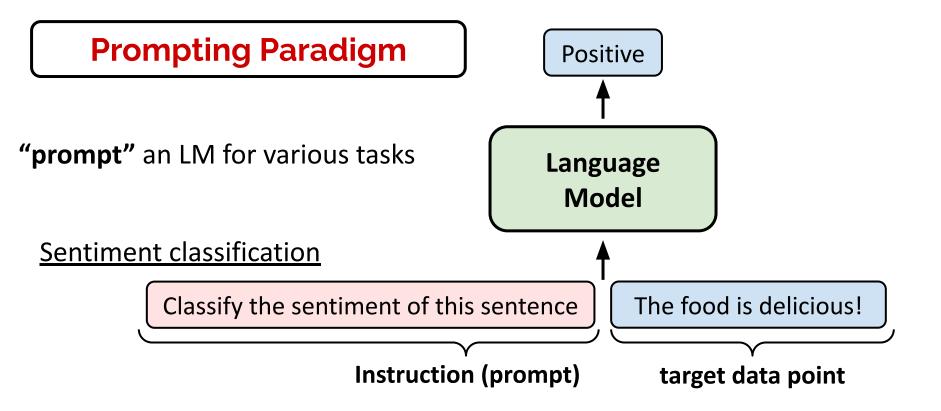
Brown, Tom, et al. "Language models are few-shot learners." *Advances in neural information processing systems* 33 (2020): 1877-1901.

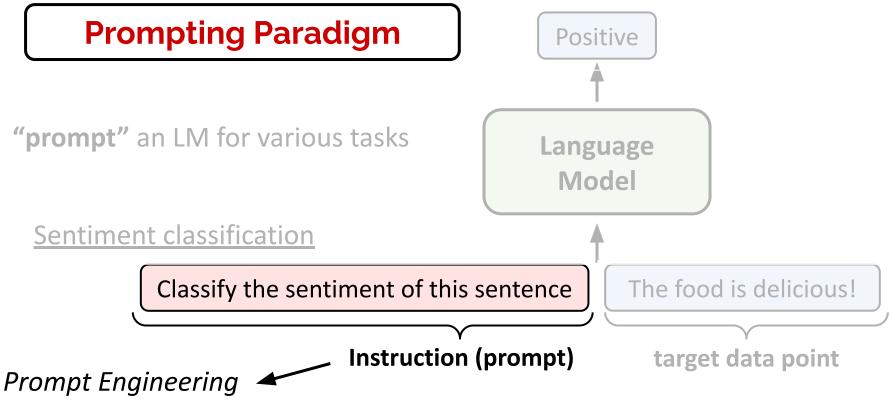
Decoder-only LM (e.g. GPT-3)

Pre-training: Next-token prediction

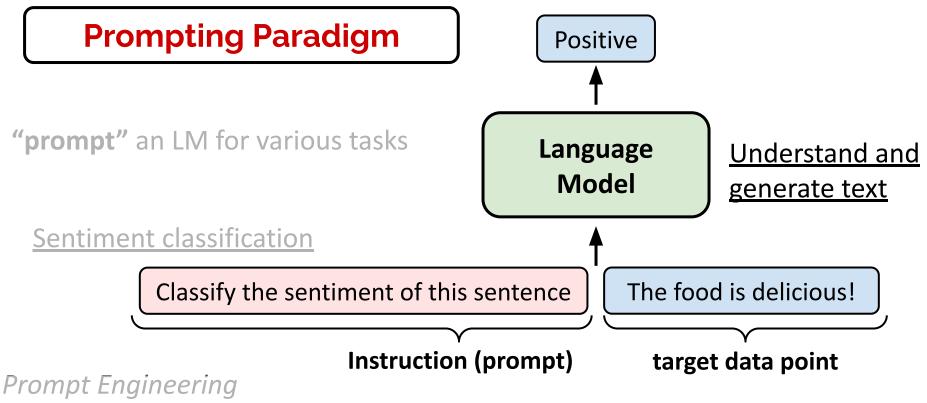




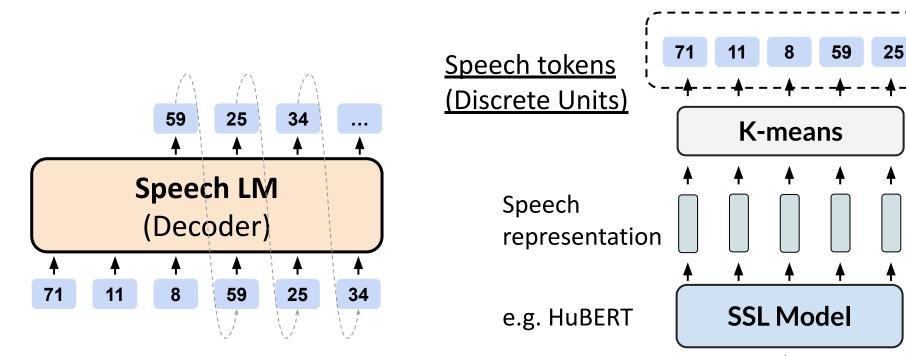




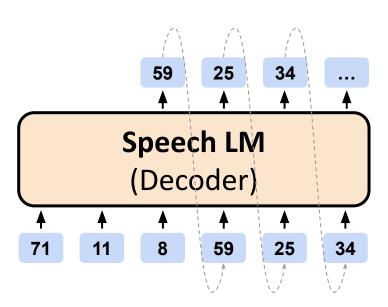
- Natural language: Interpretable, manually design, difficult to optimize.
- **Continuous vectors**: Trainable and more capable, difficult to interpret.



- Natural language: Interpretable, manually design, difficult to optimize.
- **Continuous vectors**: Trainable and more capable, difficult to interpret.



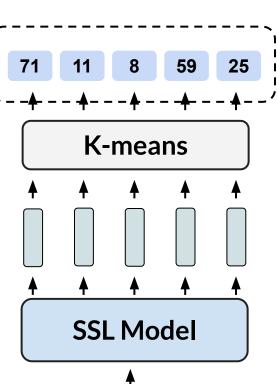
- Task: Next-token prediction
- Example: GSLM

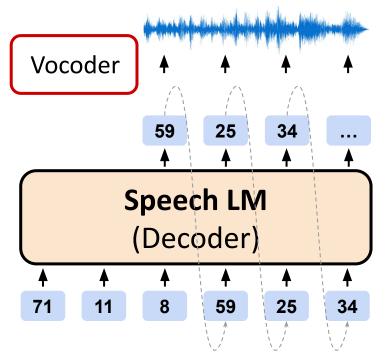


- Task: Next-token prediction
- Example: GSLM

<u>Speech tokens</u> (Discrete Units)

- Phonetic
- Semantic

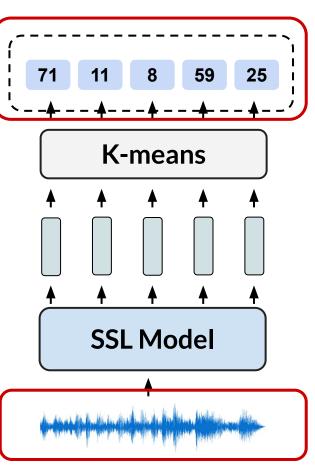


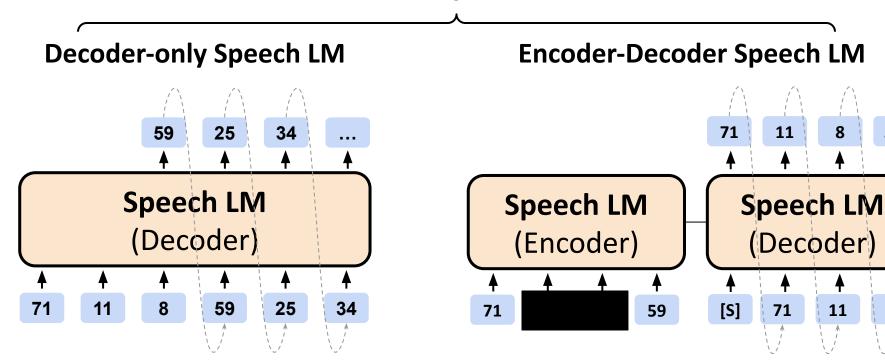


- Task: Next-token prediction
- Example: GSLM

<u>Speech tokens</u> (Discrete Units)

- Phonetic
- Semantic





- Task: Next-token prediction
- Example: GSLM

Generative Spoken Language Modeling from Raw Audio (<u>https://arxiv.org/abs/2102.01192</u>)

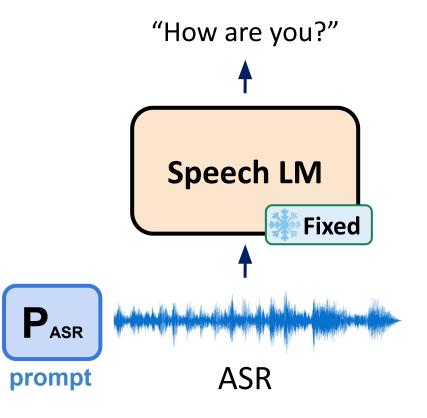
- Task: Reconstruction
- Example: Unit mBART

Enhanced Direct Speech-to-Speech Translation Using Self-supervised Pre-training and Data Augmentation (<u>https://arxiv.org/abs/2204.02967</u>) 47

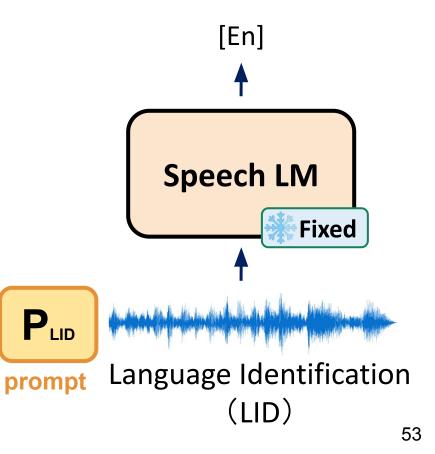
59

8

"prompt" a speech language model to perform various downstream tasks



"prompt" a speech language model to perform various downstream tasks



"prompt" a speech language model to perform various downstream tasks

• Unified framework

Contain few

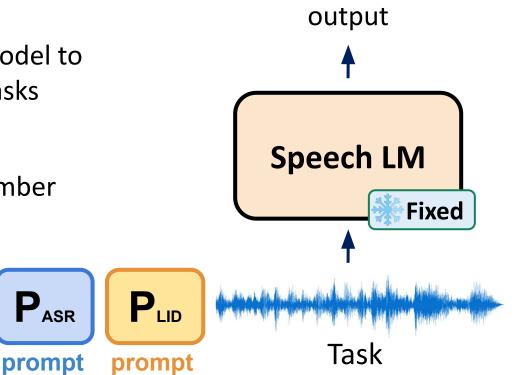
parameters

• Easy to scale up the number of downstream tasks

Ptask

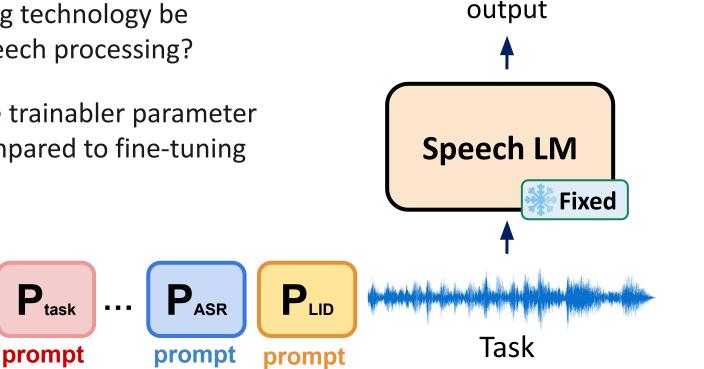
prompt

. . .



- Can prompting technology be 1. applied to speech processing?
- 2. Can it achieve trainabler parameter efficiency compared to fine-tuning paradigm?

Ptask



SpeechPrompt

Outline

Diverse Speech Processing Tasks

Prompting Speech LM

Experiment Results

Further improvement

Speech Classification Tasks
Sequence Generation Tasks
Speech Generation Tasks

$\mathbf{3}$ kinds of speech processing tasks that take speech as input

1. Speech Classification

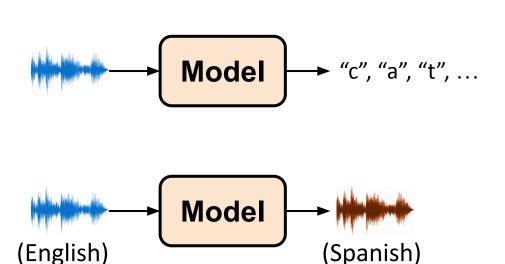
- → Speech to class
- → e.g. Langauge Identification

2. Sequence Generation

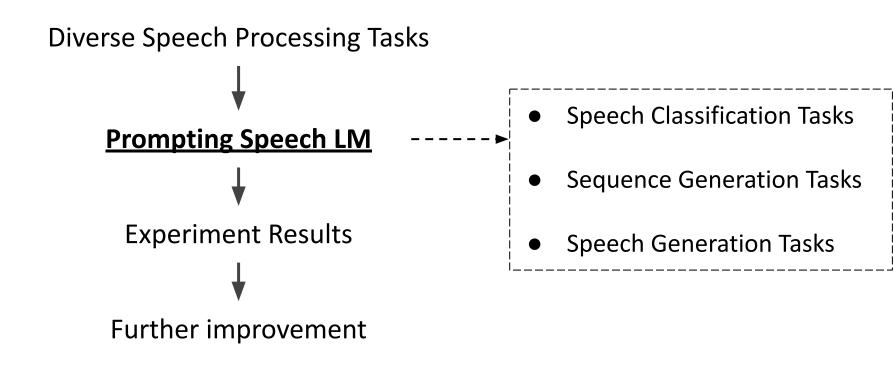
- → Speech to label sequence
- → e.g. ASR

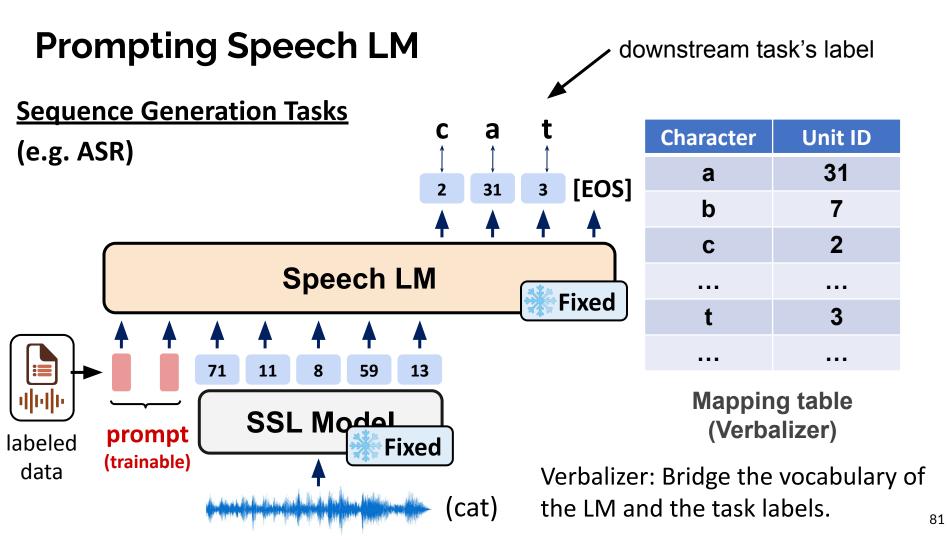
3. Speech Generation

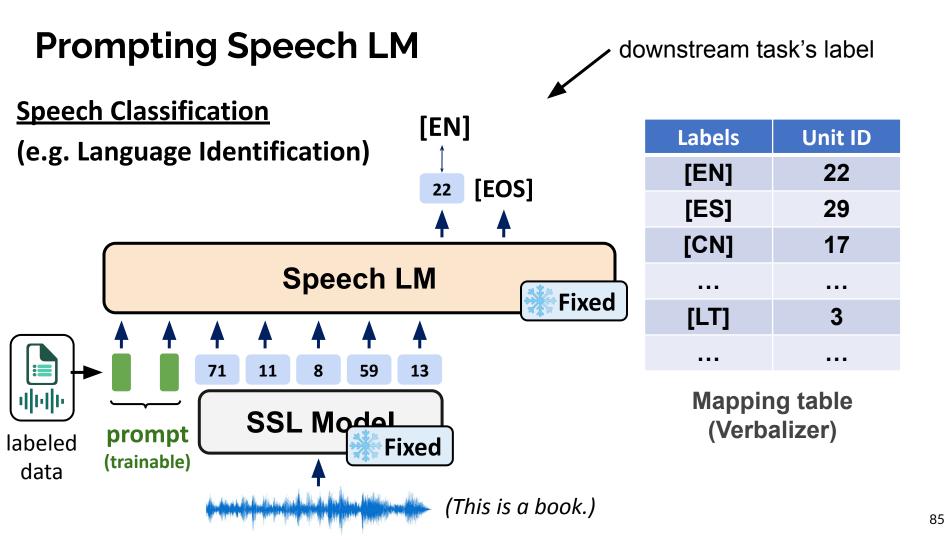
- → Speech to speech
- → e.g. Speech translation



Outline





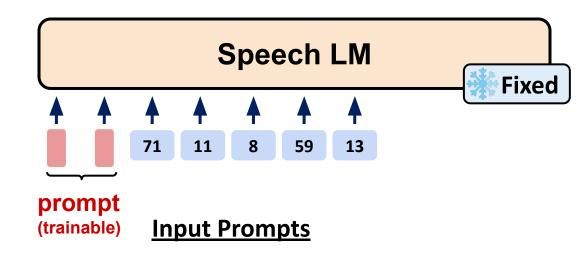


Prompting Speech LM

(今天天氣好嗎?) **Speech Generation** Pre-trained vocoder (e.g. Speech Translation) [EOS] 8 2 71 **Speech LM** Fixed 71 11 8 59 13 SSL Model prompt labeled Fixed (trainable) data (How's the weather today?)

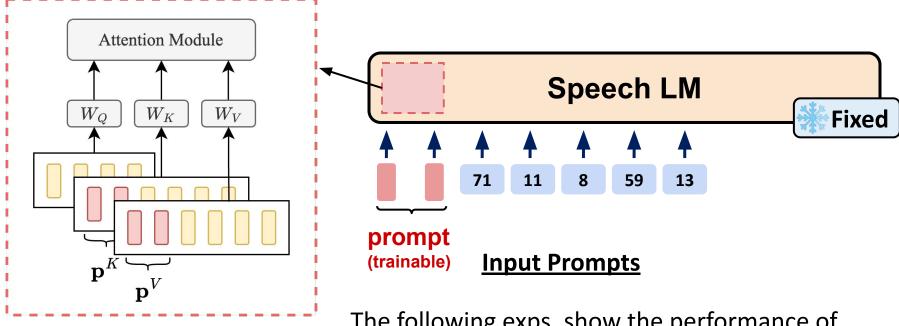
Prompting Speech LM

Prompting: Find the prompts and put them at the **input** without modifying the LM's architecture



Prompting Speech LM

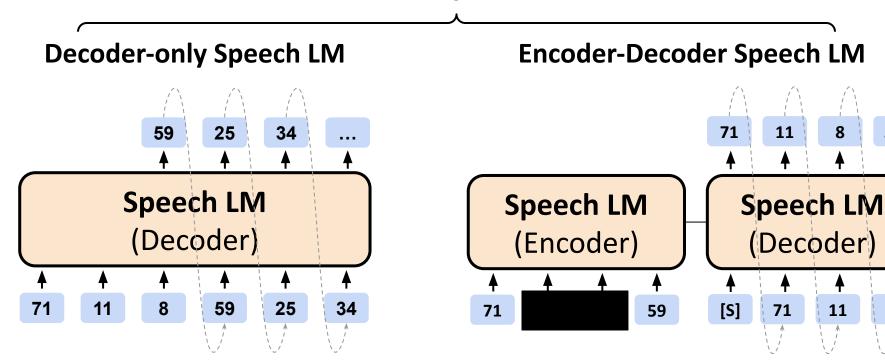
The prompts are prepended at the **input** of each transformer layer.



Deep Prompts guiding the attention mechnism

The following exps. show the performance of input prompts + deep prompts

Textless Speech LM



- Task: Next-token prediction
- Example: GSLM

Generative Spoken Language Modeling from Raw Audio (<u>https://arxiv.org/abs/2102.01192</u>)

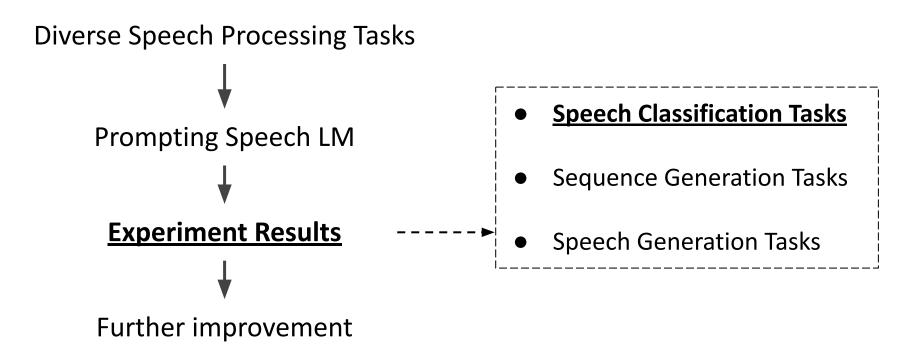
- Task: Reconstruction
- Example: Unit mBART

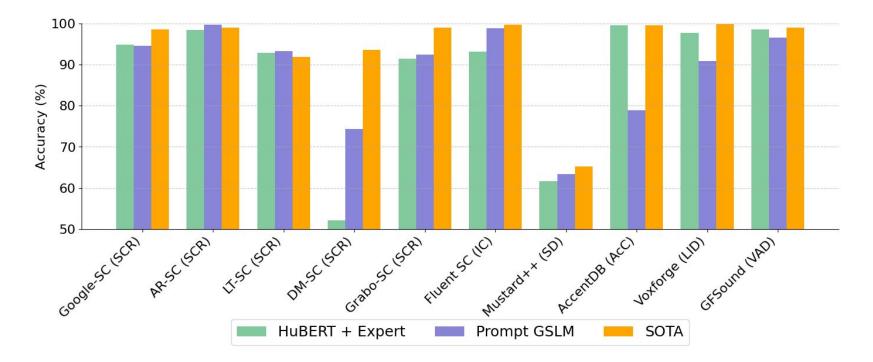
Enhanced Direct Speech-to-Speech Translation Using Self-supervised Pre-training and Data Augmentation (<u>https://arxiv.org/abs/2204.02967</u>) 92

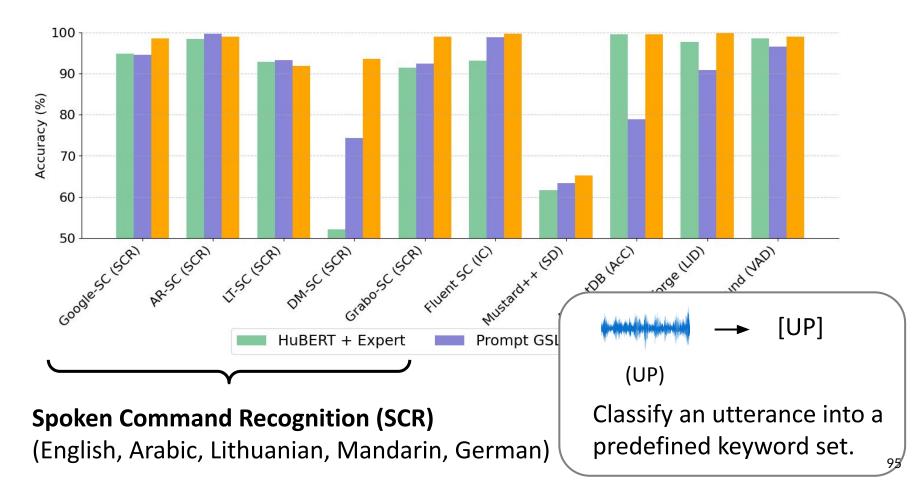
59

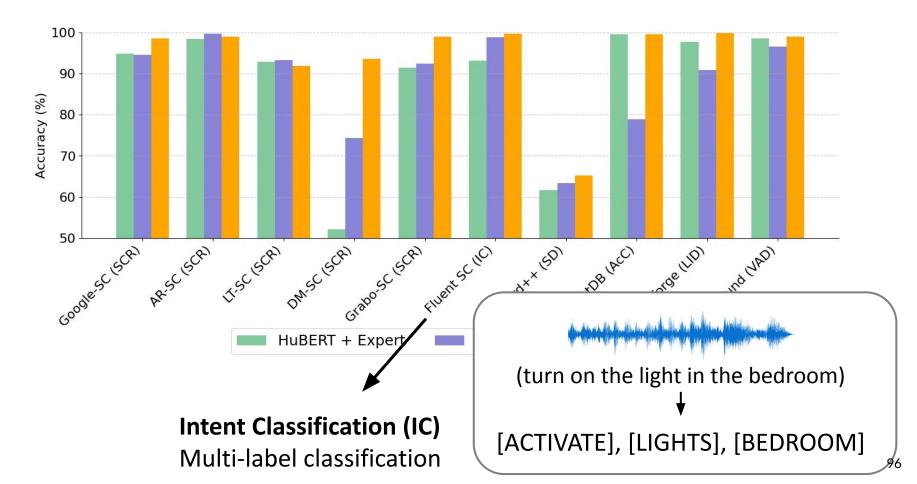
8

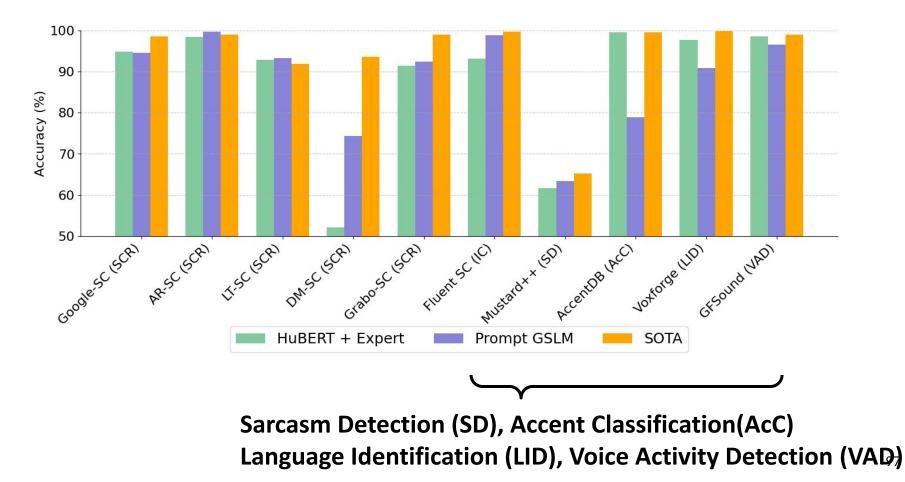
Outline

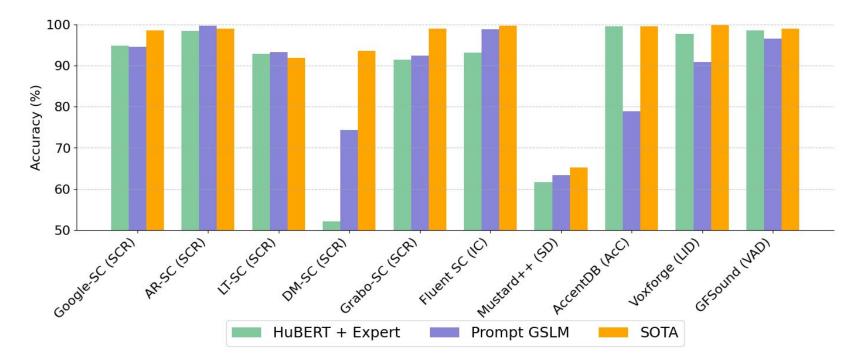




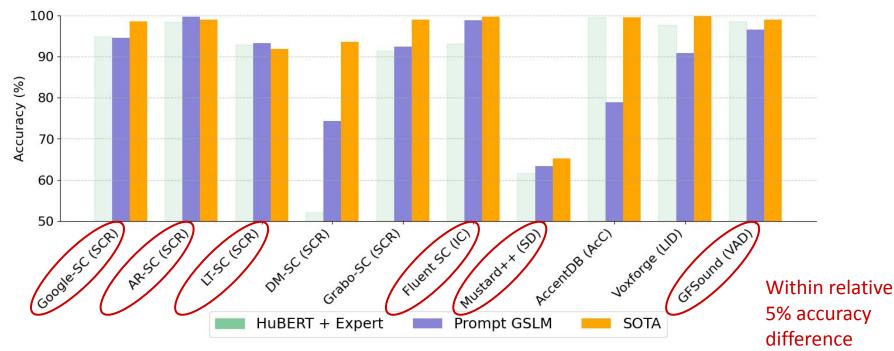




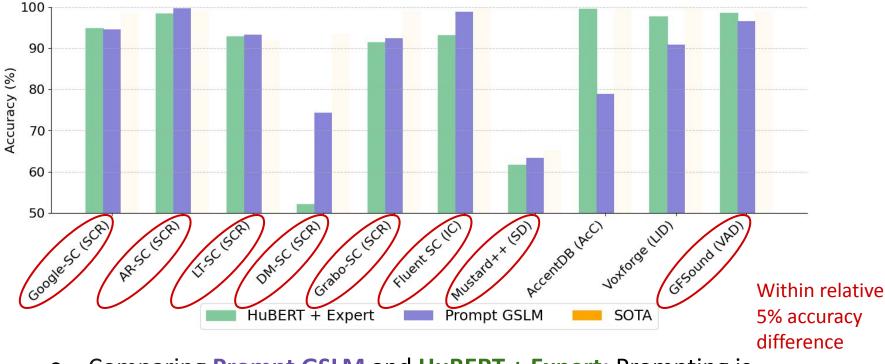




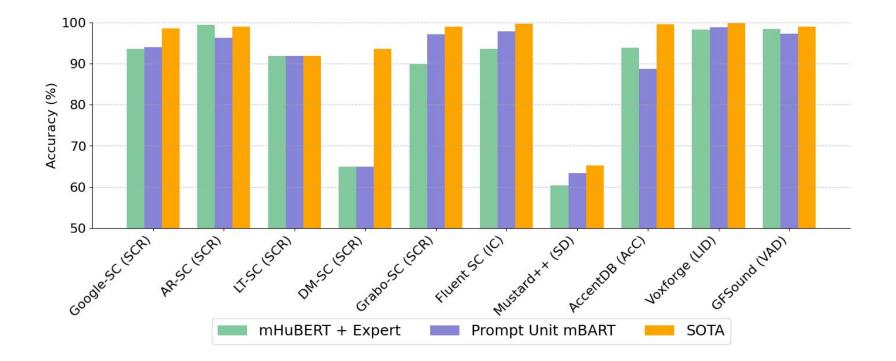
- HuBERT + Expert: Fine-tuning paradigm #Params.: 0.2M
- **Prompt GSLM**: Prompting paradigm #Params.: **0.15M**
- SOTA: Best model dedicated trained

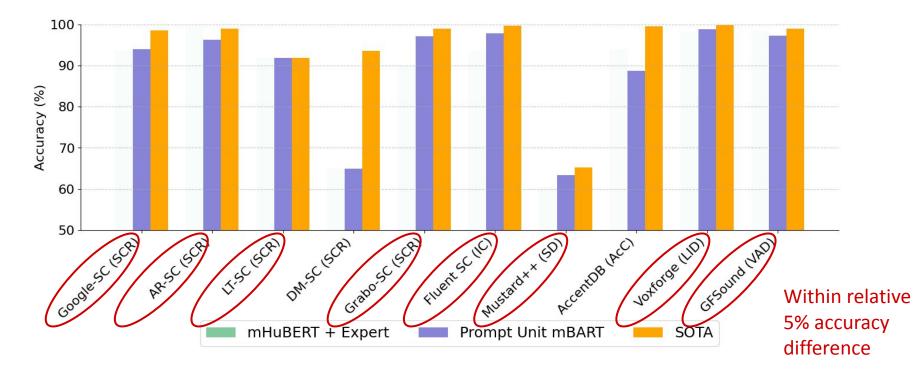


- Prompt GSLM can achieve comparable performance to SOTA
- **Prompting** is within a unified framework.

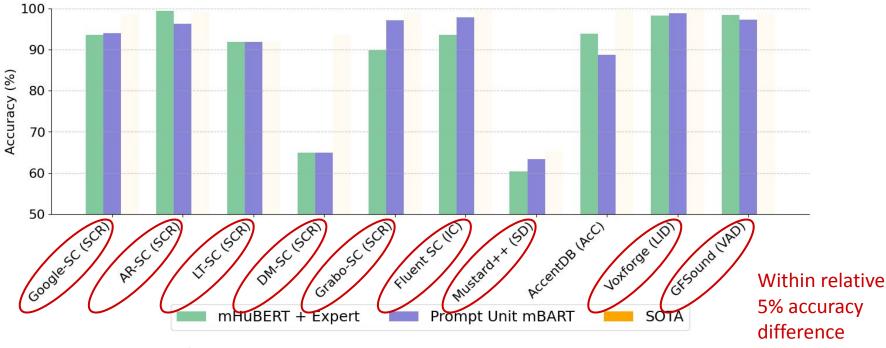


• Comparing **Prompt GSLM** and **HuBERT + Expert:** Prompting is competitive to pre-train, fine-tune paradigm in 8 out of 10 tasks.

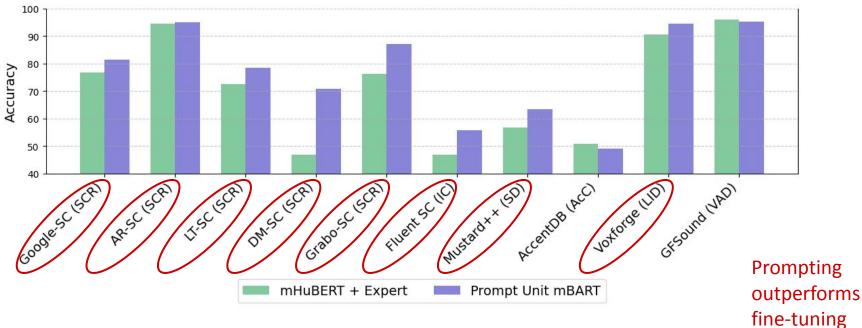




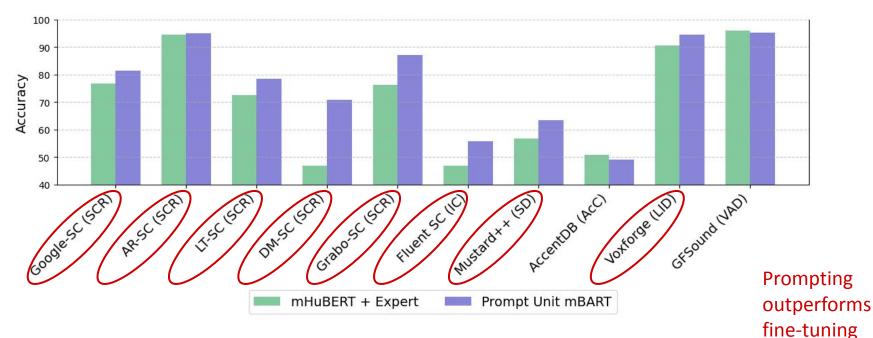
• **Prompt Unit mBART** is competitive to **SOTA** in 8 out of 10 tasks.



 Prompt Unit mBART is competitive to mHuBERT + Expert in 9 out of 10 tasks



• **10-shot Learning**. Each class contains only 10 training data.



- **10-shot Learning**. Each class contains only 10 training data.
- **Prompt Unit mBART** outperforms **mHuBERT + Expert** in 8 out of 10 tasks.

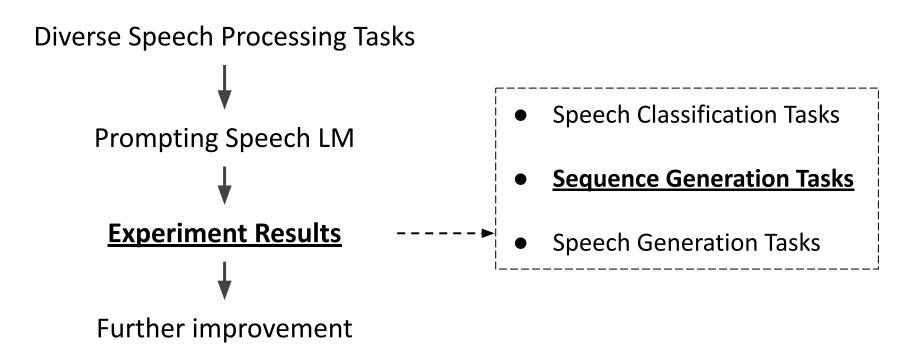
Prompting for Speech Classification

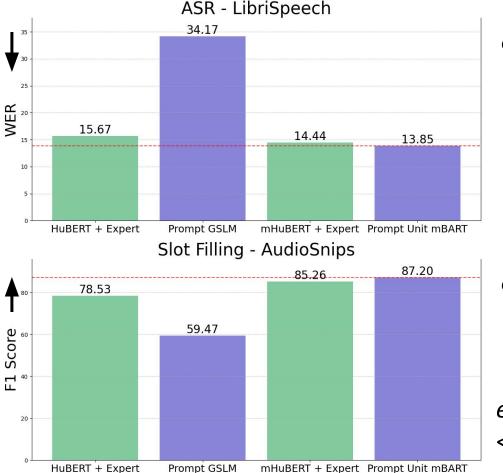
1. Prompting is competitive to fine-tuning

2. **Prompting** can also be competitive to **SOTA**

3. Prompting has advantages in few-shot learning

Outline

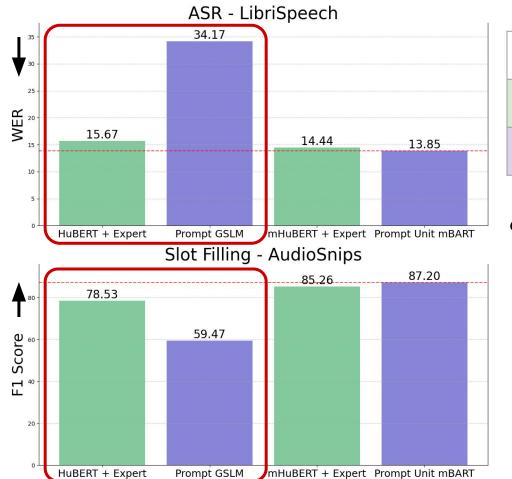




• **ASR**: transcribe an utterance into characters

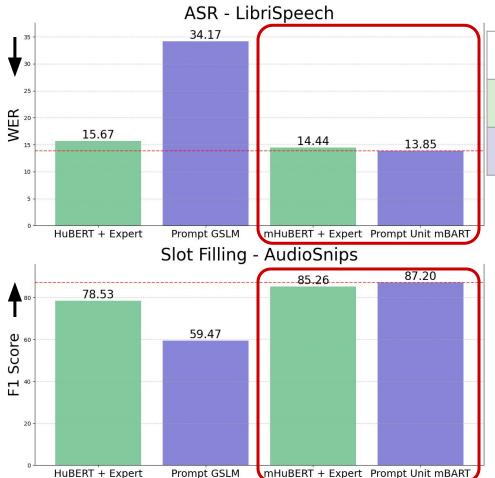
• **Slot Filling**: conduct ASR and identify the slot types at the same time.

e.g. What's the weather like in <L> NewYork <L/> <T> tomorrow </T>?



Scenario	Traniable Params.
HuBERT + Expert	2.9M
Prompt GSLM	4.5M

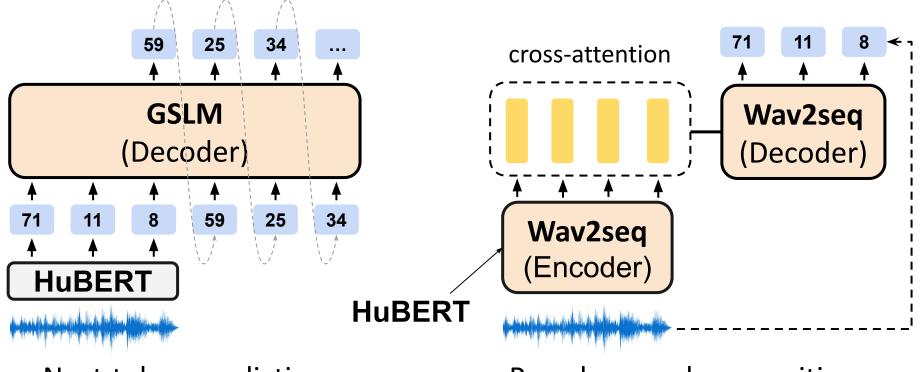
 Prompting GSLM underperforms the pre-train, fine-tune paradigm.



Scenario	Traniable Params.
mHuBERT + Expert	2.9M
Prompt Unit mBART	2.6M

- Prompting Unit mBART outperforms the pre-train, fine-tune paradigm.
- For prompting, model architecture and pre-training task matter.
- Encoder-decoder model is better than decoder-only model?

Decoder-only vs. Encoder-Decoder Speech LM



Next-token prediction

Pseudo speech recognition

Prompting and adapter tuning for self-supervised encoder-decoder speech model, ASRU2023 (https://arxiv.org/abs/2310.02971) 116

Decoder-only vs. Encoder-Decoder Speech LM

Model	Architecture	Params		Data		Pre-training Task	
GSLM	HuBERT Unit (input) + 12-layer Transformer (Decoder-only)	~150M		LibriLight 60k hours ,	k	Next-token prediction	
Wav2Seq	HuBERT Encoder + 6-layer Transformer (Encoder-Decoder)	~150M		LibriSpeech 960 hours		Pseudo speech recognition	
		GSLM has more training data					

Similar model size

Decoder-only vs. Encoder-Decoder Speech LM



Speech Classification

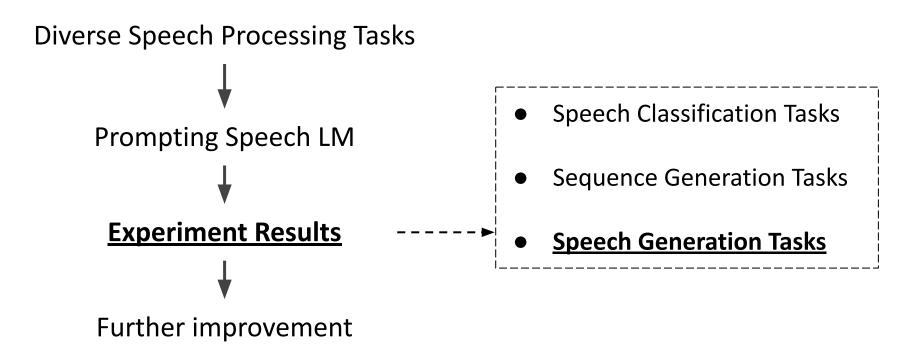
Sequence Generation

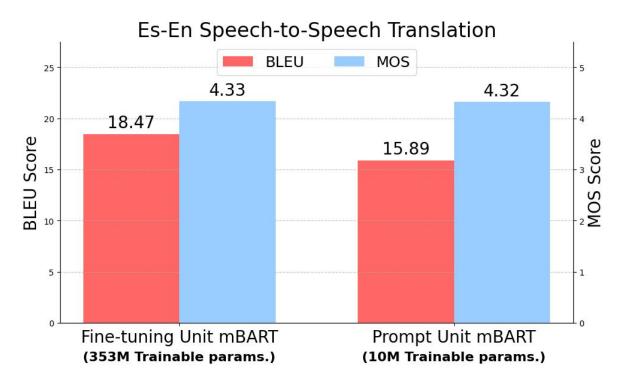
Comparable performance **Prompt Wav2Seq** is much better than **prompt GSLM**

Prompting and adapter tuning for self-supervised encoder-decoder speech model, ASRU2023 (https://arxiv.org/abs/2310.02971) 1

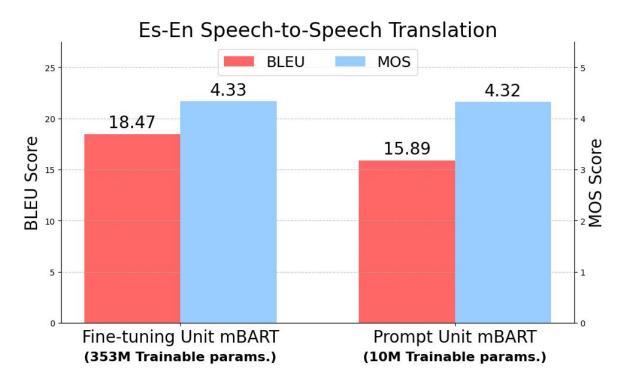
- 1. Prompting **Unit mBART** can achieve competitive performance
- 2. Prompting an **Encoder-Decoder** model is better than prompting a **Decoder-only** model

Outline

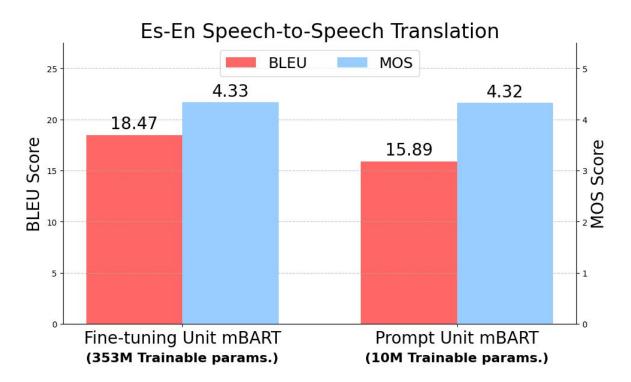




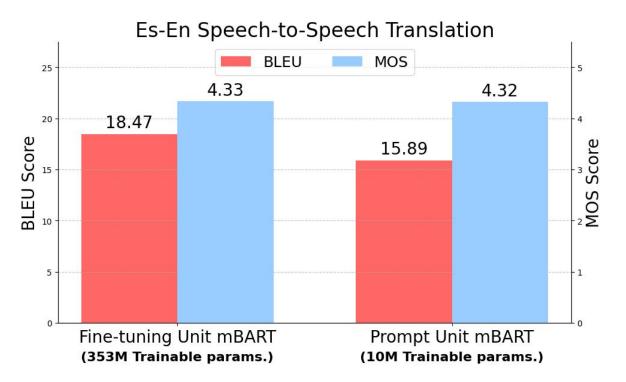
- **BLEU** score: Translation quality
- MOS score: Speech quality



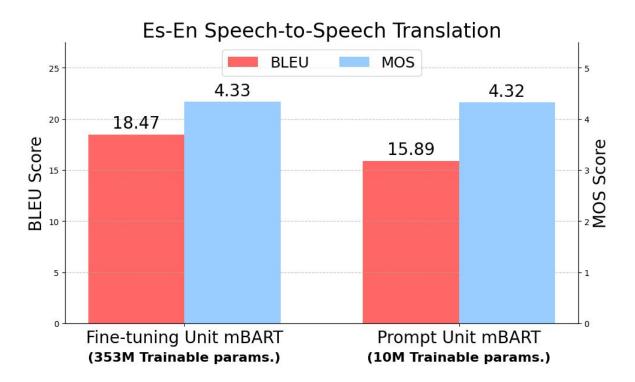
- Left: Fine-tuning the whole Unit mBART (353M params.)
- Right: Prompting Unit mBART (10M params)



- Prompting: Performance drop but with much fewer trainable params.
- Both have similar MOS score.



- Fine-tuning HuBERT/mHuBERT fails
- GSLM also fails



• Speech-to-speech translation is challenging, often require auxiliary tasks

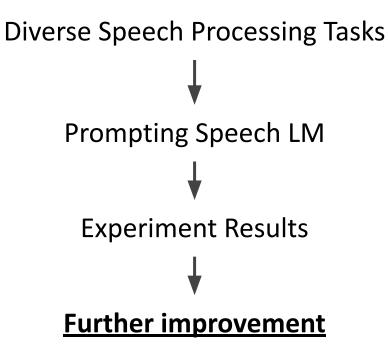
Direct speech-to-speech translation with a sequence-to-sequence model (<u>https://arxiv.org/abs/1904.060313</u>)

Summary

- 1. Prompting **GSLM** is feasible in speech classification tasks
- 2. Prompting **Wav2Seq** is competitive in speech classification and sequence generation
- 3. Prompting **Unit mBART** can achieve competitive performance in diverse tasks

<u>As more advanced Speech LM came out.</u> <u>The performance is getting better</u>

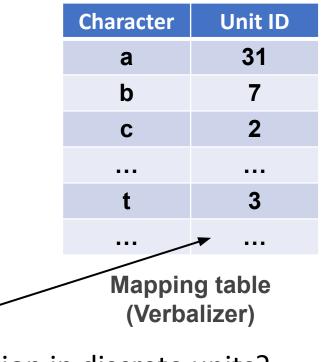
Outline



- Speech Classification Tasks
- Sequence Generation Tasks
- Speech Generation Tasks

Fully Utilize the information in Discrete Units

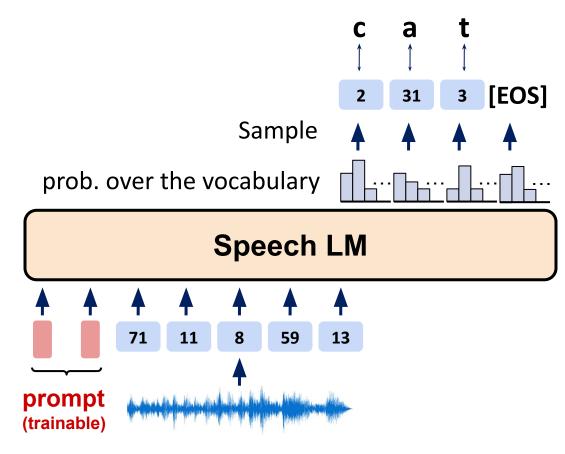
- Until now, we use <u>random mapping</u> to bridge the units and the labels.
 - Speech classification tasks
 - Sequence generation tasks



Contains rich information.

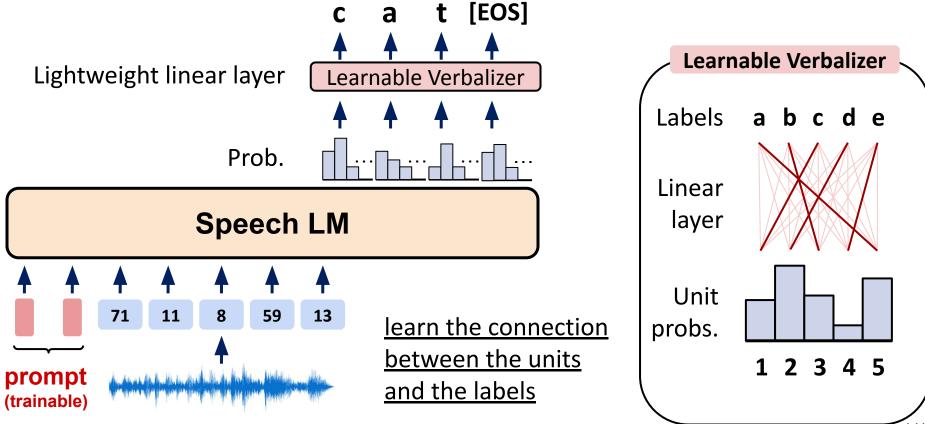
Can we fully utilize the information in discrete units?

Fully Utilize the information in Discrete Units



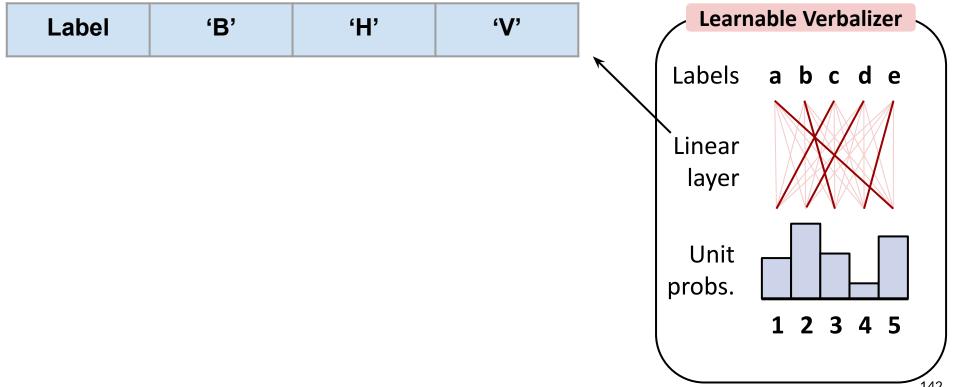
Character	Unit ID
а	31
b	7
С	2
t	3

Fully Utilize the information in Discrete Units



Learnable Verbalizer - A Case Study

For prompting Unit mBART in ASR



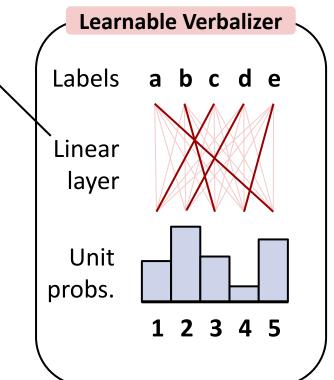
Learnable Verbalizer - A Case Study

For prompting Unit mBART in ASR

Label	'B'	'H'	'V'	
Unit	290	470	577	

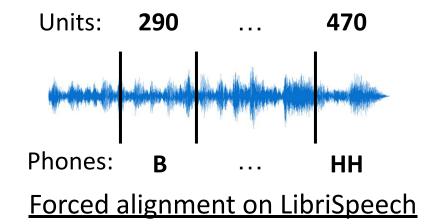
Largest weight in the linear layer for a specific label.

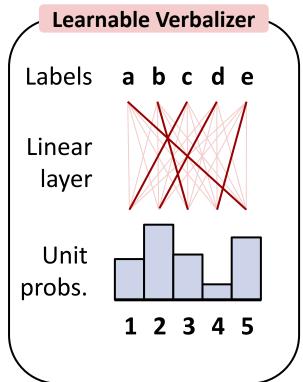
What is the meaning of these discrete units?



For prompting Unit mBART in ASR

Label	'B'	ʻH'	'V'
Unit	290	470	577
Phoneme	В	НН	V





For prompting Unit mBART in ASR

Label	'B'	'H'	'V'
Unit	290	470	577
Phoneme	В	НН	V

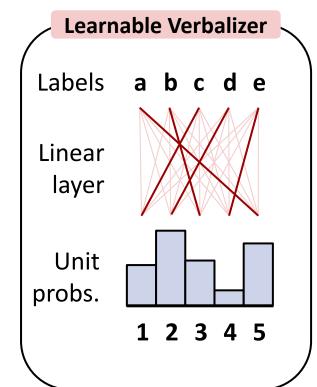
• The learnable verbalizer can automatically find the units for the labels

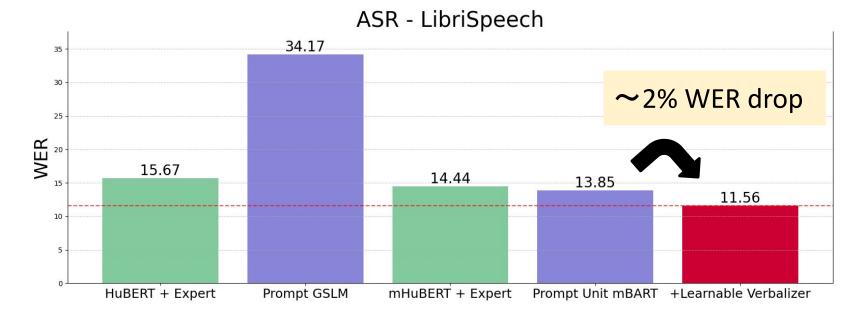
Learnable Verbalizer Labels a b c d e Linear layer Unit probs. 1 2 3 4 5

For prompting Unit mBART in Phoneme Recognition (PR)

Label	'F'	'K'	'TH'
Unit	958	487	918
Phoneme	F	к	тн

• The learnable verbalizer can automatically find the units for the labels





- Performance improvement with learnable verbalizer.
- With additional parameters less than 0.03M (~1% of the prompt parameters)

Prompting Paradigm

Can prompting technology be applied to 1. speech processing?

PASR

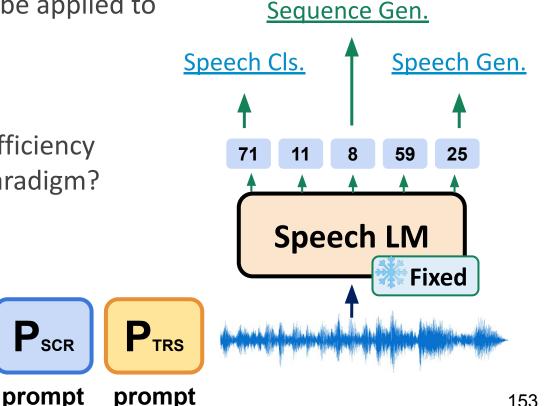
prompt

2. Can it achieve parameter efficiency compared to fine-tuning paradigm?

Limitation:

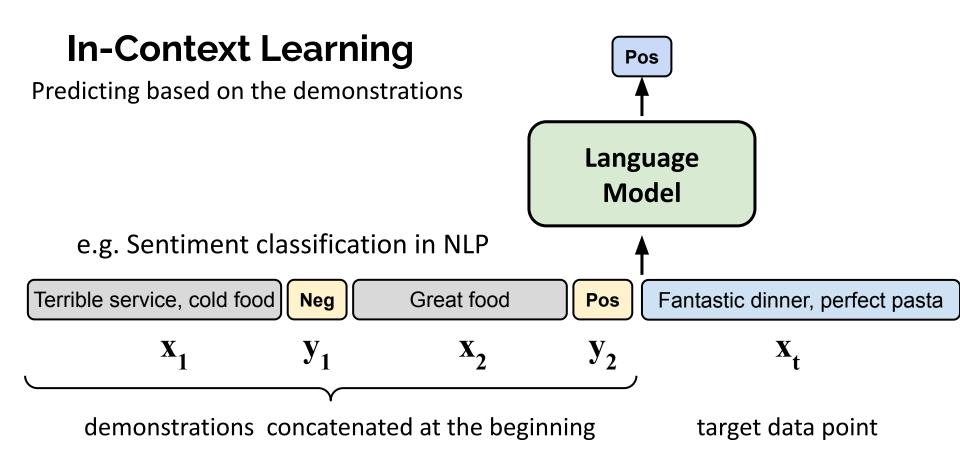
Still require training

for a specifc task



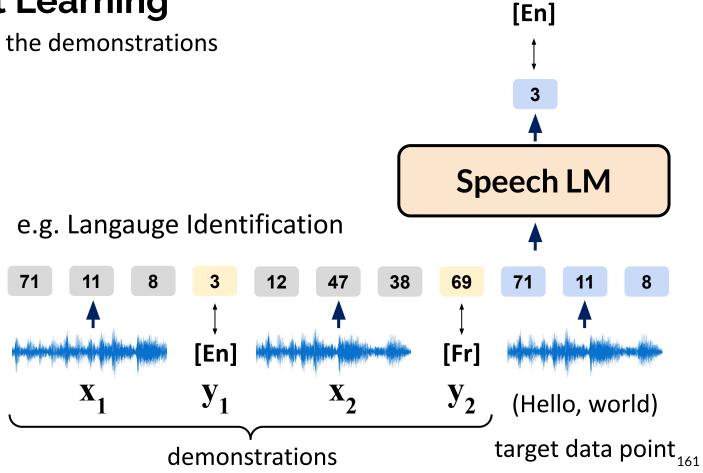
153

In-Context Learning for Speech LM



In-Context Learning

Predicting based on the demonstrations

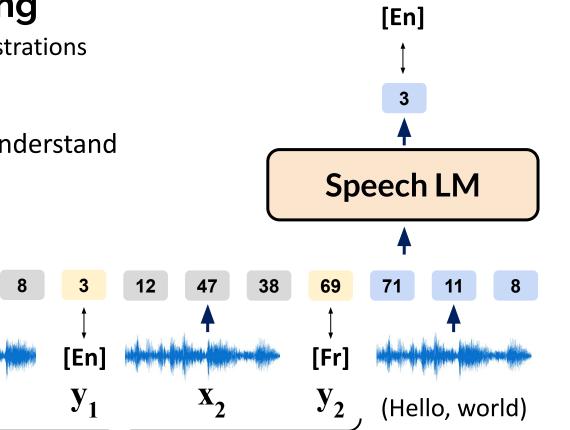


In-Context Learning

Predicting based on the demonstrations

The original GSLM can not understand and fails to make prediction

71



demonstrations

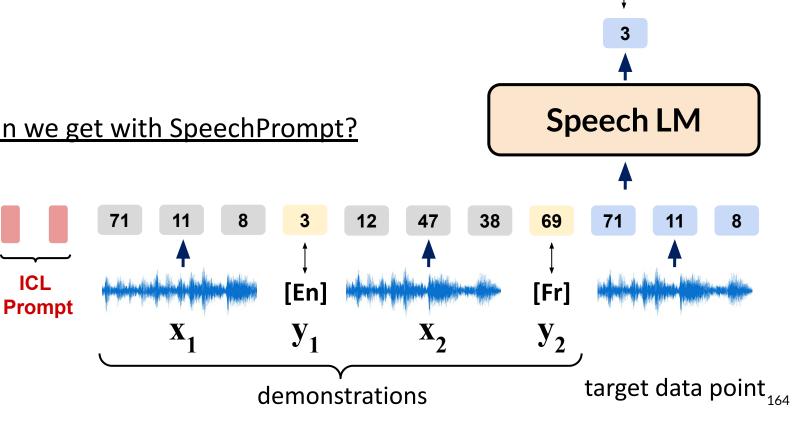
LLM can take care of random labels

Larger language models do in-context learning differently (https://arxiv.org/abs/2303.03846)

In-Context Learning

Predicting based on the demonstrations

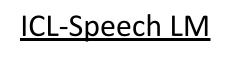
How far can we get with SpeechPrompt?



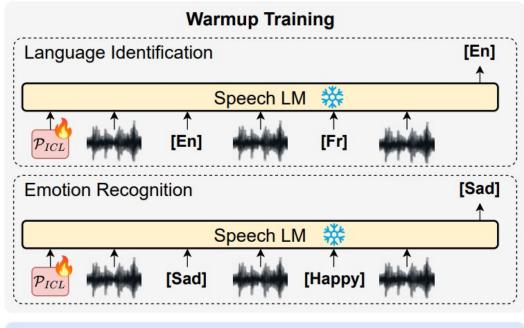
[En]

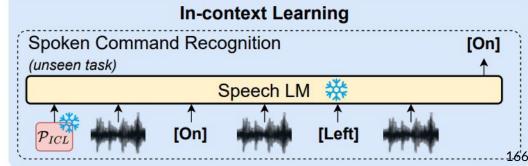
• Warmup Training:

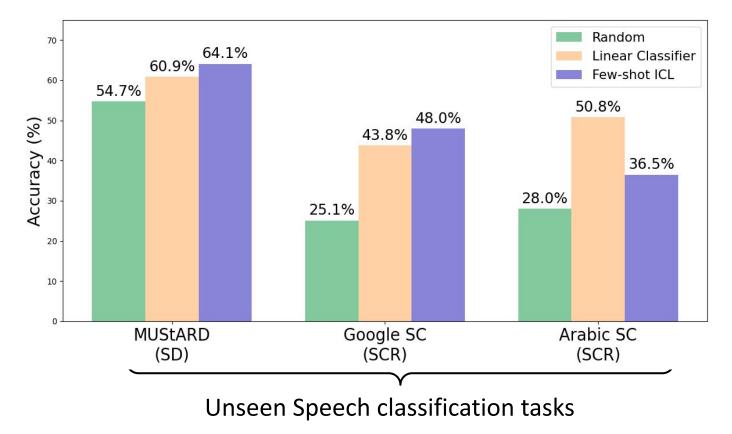
Learn ICL prompts to enable the speech LM with ICL capability.

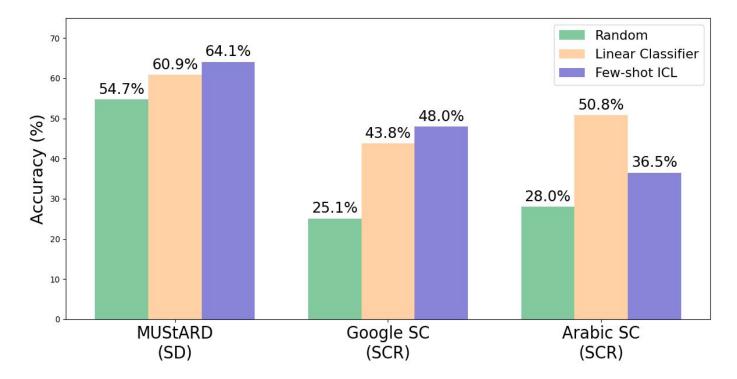


- In-context Learning
 - The LM is fixed
 - The prompt is fixed
 - The task is unseen

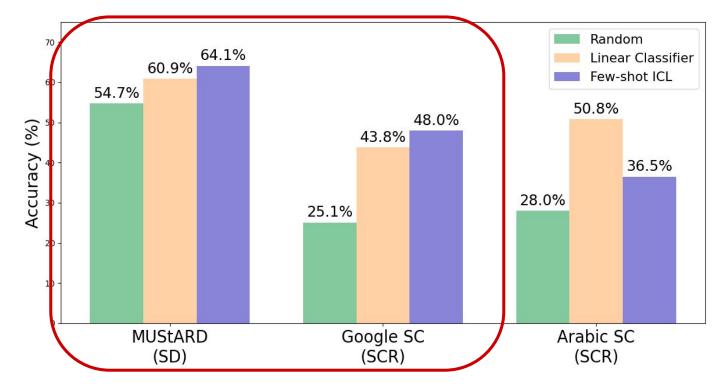




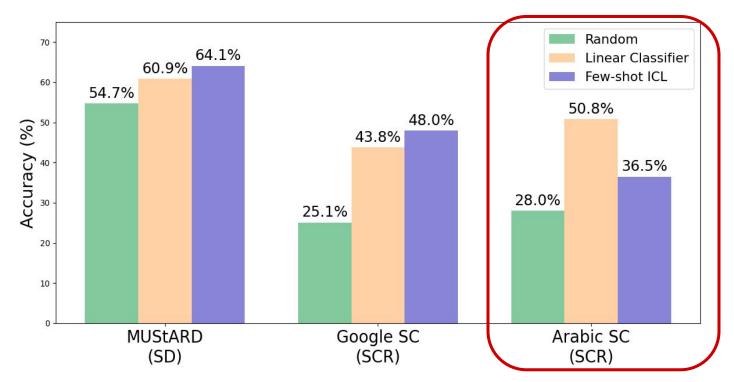




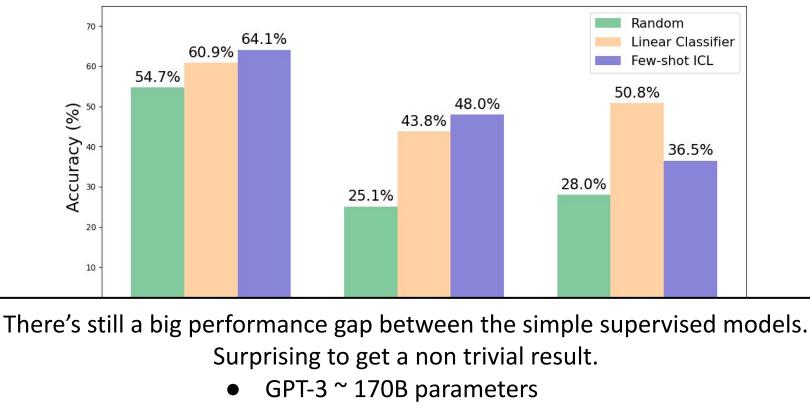
Warmup training: Mandarin SCR, Lithuanian SCR, Language ID, Emotion Recognition



• GSLM can perform In-context Learning outperforming random guessing and linear classifier



• In-context Learning underperform linear classifer probably due to cross-lingual setting

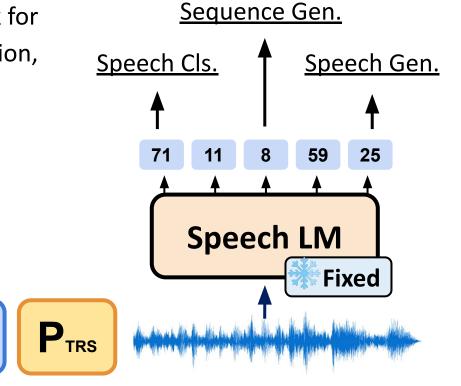


GSLM ~ 150M parameters + prompts (0.2M)

Conclusion

Conclusion

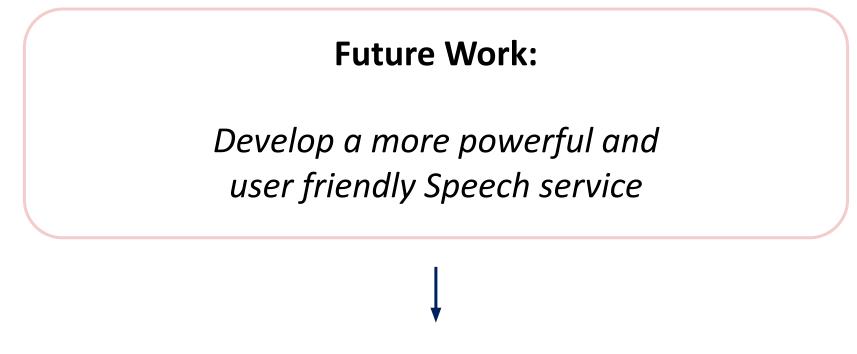
- Achieve a unified prompting framework for speech classification, sequence generation, and speech generation tasks
- With more advanced speech LMs are developed, further performance improvements can be observed



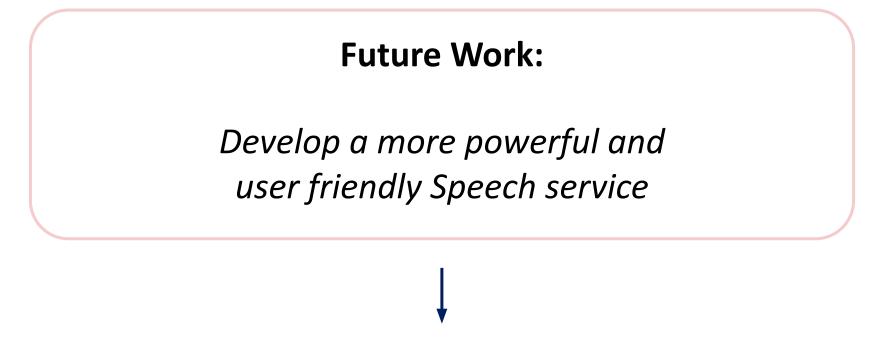
PSCR

PASR

Future Works



Nautral language prompts and good reasoning capability



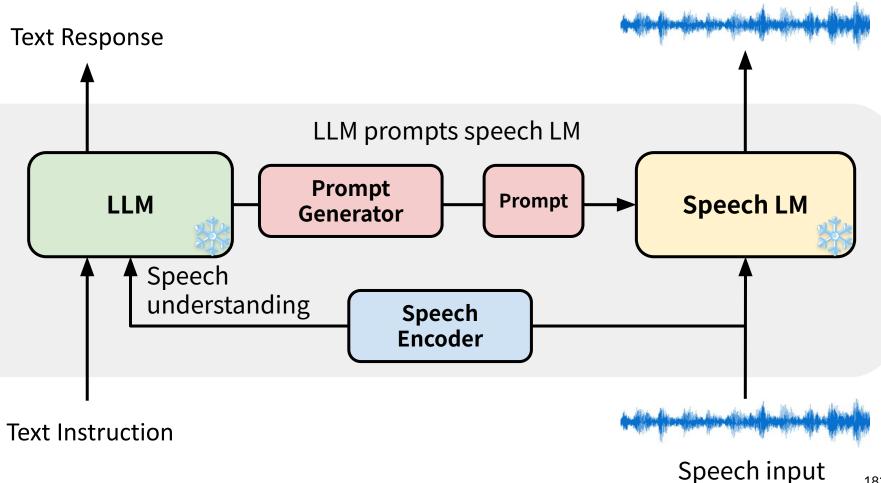
Idea: Develop a framework for combining the LLM and Speech LM

LLM :

- Generate good text response (V)
- Generate speech (X)

Speech LM :

- Generate speech (V)
- Reasoning capability (X)



Speech output

References

[1] SpeechPrompt: Prompting Speech Language Models for Speech Processing Tasks
 (IEEE/ACM Transactions on Audio Speech and Language Processing, TASLP)
 Kai-Wei Chang, Wei-Cheng Tseng, Shang-Wen Li, Hung-yi Lee

 [2] SpeechPrompt: An Exploration of Prompt Tuning on Generative Spoken Language Model for Speech Processing Tasks

(Interspeech 2022)

Kai-Wei Chang, Wei-Cheng Tseng, Shang-Wen Li, Hung-yi Lee

[3] SpeechPrompt v2: Prompt Tuning for Speech Classification Tasks

(arXiv Preprint)

Kai-Wei Chang, Yu-Kai Wang, Hua Shen, Iu-thing Kang, Wei-Cheng Tseng, Shang-Wen Li, Hung-yi Lee

[4] SpeechGen: Unlocking the Generative Power of Speech Language Models with Prompts

(arXiv Preprint)

Kai-Wei Chang, Haibin Wu, Yuan-Kuei Wu, Hung-yi Lee

[5] Prompting and Adapter Tuning for Self-supervised Encoder-Decoder Speech Model

(ASRU 2023)

Kai-Wei Chang, Ming-Hsin Chen, Yun-Ping Lin, Jing Neng Hsu, Chien-yu Huang, Shang-Wen Li, Hung-Yi Lee

[6] Exploring In-Context Learning of Textless Speech Language Model for Speech Classification Tasks

(Interspeech 2024)

Kai-Wei Chang, Ming-Hao Hsu, Shang-Wen Li, Hung-yi Lee

Thanks for your listening